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Where to find the material

e Alternative 1:
* WWW.ES(C.0rg, go to*“lectures™
* Find links there

e Alternative 2:

» Scan QR code
* simenkva.github.io/esgc_material



http://www.esqc.org/

Complex analysis



Why complex analysis? Wavefunction is

complex !
* Time-dependent Schrddinger equation

Complex
notation

0 A
2wy = AG e
- Wave phenomena o V) = HOW simplifies (1)

cos(kx — wt) = Reexpli(kx — wt)]

 Response theory: poles of response function
 Evaluation of integrals — analytic continuation
* Perturbation theory of eigenvalues
 Application to analysis of real functions



Complex plane topology

Domain

with hole —
* The complex plane is topologically the same as R? not simply

connected

Simply
connected
domain —
open, no

holes

B(z) =iweCllw-z <€}



Definition : Complex number operations

Letz=x+1yeC.

e Rez=x,Imz=1y real and imaginary part
e =7 =x-1y complex conjugate
« z=re", polar form

where ¢!’ = cos@ +isin6 Euler’s formula
e Argz =146 argument/angle/phase

2

|z|2 =77 = Rez2 + Imz2 =r
modulus/norm

squared



Visualization using color wheel

 Color the complex numbers according
to angle and modulus C

r=|x=+iyl, 6=Arg(x+1iy)




Example: Plane wave in 2d

w(r,t) = exp[i(k-r- wt)]
w=rm, k-=(0.75m1.5m)




Example from https://en.wikipedia.org/wiki/Domain_coloring
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The idea of a pure function

* Which functions f(z) are “pure functions of complex z°?

1
f)=1z fQ =ap+aiz+amz" + - apd’ f(Z):E

1 ” 7
f(z)=Rez = §(z+Z) Not “pure

* “Pure” become infinitely differentiable!
» Beautiful and useful theorems on their behavior



Definition : Complex differentiability

The function f : U — C, U C°P*" C, 1s (complex) differentiable at z € U if the limit

lim L& =@ _ oy 9 (1)

h—0 h

exists. The expression 7 — 0 means the same as in the R? case.
If D 1s an open domain in C, and 1f f(z) is complex differentiable for all z € D, we

say that f is amelic in D.

holomorphic

The definition is the same as

in one-variable calculus,
BUT h can approach O in more ways!




Cauchy—Riemann equations

« A complex function f : C — C can be viewed as a function f : R°—R?

£(2) = u(x,y) +iv(x, y) Strongly restricts
complex

» Consequence of complex differentiability: differentiable
functions!

ou(x,y)  0v(x,y) ou(x,y) _Gv(x, y)
ox Oy dy 0x




Example : Derivative of monomial

Let us apply the definition of the derivative to f(z) = 7".

fz+h)=+h)" =7+ hn" '+ higher order terms. Notice how

algebra is used,

Thus no limits
fz+h) = fz)  hnZ" ' +hot

- - =n7"! +hot, needed

so that the limit becomes

d n -1

oo - nz" (3)
We were able to perform the limit just by doing complex algebra. No-
tably, z € C was completely arbitrary, so the derivative exists every-

where.




Example : Derivative of 7z does not exist

Let us try to see if f(z) = 7 1s differentiable. Let us consider the limit

h=06x—0inR.
lim f(x+dx+1y) — f(x+1y) _5x_1 Re zis not
5x—0 5x S ox complex
. . . . differentiable
However, if we allow & = 10y — 0 instad, with 6y € R, then cither
I Jf(x+i(oy +y) — f(x+1iy) -0y .
im = —— = —1.
oy—0 0y 0y

Since the two limits are not the same, the complex limit cannot exist,
since limits are unique.

This is in fact a very simple example of a continuous function from
C — C which is not differentiable anywhere! Such an exampe 1s much
harder to find for functions R* — R?.




Holomorphic functions
U/ = open subset of C
* Given f: U - C
* If f is complex differentiable atall z€ U
» We say that f is holomorphic

 Cauchy-Riemann implies:
» fis infinitely many times differentiable .

Etymology:

e Holo-: from the Greek word holos,
meaning “whole” or “entire.”

e -morphic: from the Greek word morphé,
meaning “form” or “shape.”



Isolated singularities

» Suppose f Is holomorphic in a punctured disc (z, not in set)
« We say that f has an isolated sinqularity
 Three options:

1. Removable singularity:
e f can be extended to the hole

2. Pole of order p: C EE_'_% o7

e f cannot be extended, f(z) ~
(2 —20)P

U/ = puctured disc

3. Essential singularity:
» f cannot be extended, does not behave like a pole



Holomorphic functions are analytic
 Recall that iIf f 1s differentiable m
flz+h) = f(D)+hf'(z) + Oh°)

 But holomorphic means infinitely differentiable
« Remarkably, we have a convergent power series

Infinite

series, no
error!

fz+h)=f(z) +hf'(z) + %,fﬁf”(z) TR

 There is always a (possible infinitely large) disc where the series
converges



Example : Geometric series

The geometric series,

1
fﬁ9=1——*=l+z+f+~~ for |z] < 1.
— 2

The function f(z) 1s complex differentiable at any z # 1:

11 1 1 h
z—h 1—-z1-h/(1=2) 1-72 1 -7

f(z+h)=1_

so that f'(z) = (1_1Z)2.

We note that f 1s divergent as z — 1, this 1s an example of a pole of

f.

So functions
can be defined

as power
series!




Convergence radius when starting from
different points

* In general, one can develop power series around different points,
converging to the same function

 But the convergence radius can be different
 Radius Is determined by closest singularity, e.g., pole

\ 4 \

--/ A '
' 4

smgulanty W'igy o P



Laurent series

- We can develop power series near gpole! U = puctured disc

B E ,
00 ! L
n ‘ ‘
f@ =) enlz=20) J R,
=— " .
o - <0 n
LNk e
« Example: x r
*I'* re
L -1 2 v 2
=z +1+z+7+--- *I.-i‘

Laurent expansion

around pole at z=0




Removable singularity

 This function is defined everywhere except z = 0:
e” — 1

—

f(2) =

By the usual rules for differentiation, it is holomorphic
* We Taylor expand around the origin and find:

, l+z+722/2-1+0(° 1
12) = ST S e 0@

« S0 we can define f(0) = 1 and we remove the singularity!




Complex line integrals

Definition : Complex line integral

Let f : D — C be continuous, and let I' be a (piecewise)
smooth oriented curve parameterized by v : I — C. The
complex line integral of f along I' 1s now defined as

fr J@)dz = fl fy@®)y (D dr, (D

which is independent of parameterization. Note that dz =
¥’ (t)dt, an infinitesimally small piece of the curve.




Theorem : Cauchy theorem

Let f : D — C, where D is a simply connected open do-

main. Let I' be a piecewise smooth simple closed curve in
D. Then,

9§f(z) dz = 0. (1)
)




Theorem : Cauchy integral formula

Let the function f : D — C be complex differentiable, and let I
be a simple closed curve in D. Then,

1
fzo) = - ¢ L2

dz. (1)

2m Jr 7 — 20

The value of the

function depends only
on the value on the
curve!




Theorem

Let D be simply connected, and let f : D — C be complex

analytic in D. Then f is infinitely many times differentiable,
and we have the power series representation

©.Q)

(n)
f(z) = Zan(z -20)", where a, = /@ (1)

!
p— n.

The derivatives are given by the formula

F(z) = ng T 2)

27Ti r (W — Z)n+1 .




Cauchy residue theorem

(&

Recall Laurent: /()= ) euz —20)"

n=-—p

Definition of residue at singularity:
Res(f,20) = c-
Residue theorem: If f holomorphic in U,

dz =2mi ) Res(f,
fﬁr f(2) dz = 2mi ) Res(f, a)

Sum over

holes inside
curve




Example: Evaluation of integral

ey f

dx

 Task: compute: f

o X2+ 1

e Use residue theoremon |

 Find Laurent expansion around I X
« Res(f,i) = 1/(2i)

* Integral over semicircle Is small,
only integral on [-R,R] left

 Take limit as R to infinity
fﬂ 1 1 ¥ 4+l=(x+Dx—-1i)

dx=2ni—=nm
X2+ 1 2i

[im

R—=co



Fourier series and transform



What is Fourier theory good for?

« Some partial differential equations become simpler
 Poisson equation ...

 Plane-wave basis sets
* Solid state systems, crystals ...

* Response theory
« How a quantum system responds to periodic perturbations (e.g., EM waves)

« Signal processing, image analysis



Epicycles of planetary motion

* Ptolemaic and Copernican system
of astronomy was geocentric

 But observations required epicycles
* An early form of Fourier series

2(f) = ape™ + a; ™"




Epicycles of planetary motion

* Ptolemaic and Copernican system
of astronomy was geocentric

 But observations required epicycles
* An early form of Fourier series

Elk]t'

72(1) = ape™ + aye

* (The ancient Greeks did not use
complex numbers)




Joseph Fourier (1768-1830)

 Had the iIdea that general periodic
functions could be decomposed into
sinusoidal components

* A function of period T:

A function of period T = 2

N
AR

\ X
R
AN
=

f(x)

7
7

-0.14 ! S SRR
. R R
\ s \s;‘.\\s“‘\\
——




CO m p I eX FO u rie r Se ri eS The exponential functions

are periodic, shorter and
shorter period

elet f:R—-C
« The function Is periodic with period T if

f+T)=f@)

Can we find a

. . . series such that
» Consider now a Fourier series

(0 = f@)
f@) = Z c et ¢, eC )

neg,

« Assuming convergence of series, clearly a periodic function



Theorem: Complex Fourier series

elet f:R—-C

* Periodic with period T .

 Square integrable in [0,T] : f (D) dt < +o0
0

| A N |
s Let  cp == f e ftydt and  f()= ) ™, ¢, eC

1
0 HEL

e Then f(t)= f(t) “almost everywhere”



In terms of infinite dimensional Hilbert

* The exponential functions are orthonormal basis functions for L2[0,T]

| o | A
@'H{I) — ﬁfzmmﬂ (';bm@m}’ — ?f EERIUH_H}HT df — éfa,m
0

* Fourier series ’just” a basis expansion!

 But an L? function only defined up to “sets of zero length”, so
convergence not necessarily everywhere



Examples

* We watch a Jupyter notebook with Fourier series of
e Square wave
« Sawtooth wave



Dirichlet conditions

Conditions on f such that Fourier series converges everywhere

1. Must be periodic
2. A finite number of maxima and minima in one period

3. A finite number of discontinuities

 Under these conditions, the series converges everywhere

* Except at discontinuities, where it converges to average of ”jump”
* See, e.7., square wave example



Sine/cosine series

 Using Euler’s formula: 2T _ o (@) +isin (@)

Equivalent series,
but sine/cosine

(1) = Z ¢, 2T e can be more

* We rewrite the Fourier series:

useful sometimes

NEL

2mnt . [ 2nnt
f(f)——+ZbHEGS( = )+aﬁ_sm( T )

by =cp+cp, ay,=1ilc, —c_y)



Fourier transform

* For functions that are not periodic:
Fel®O. e, [ IfGP dx< oo

* The (normalized) Fourier transform is defined as:

T

flk) = N/% J:m e M f(x) dx

« Fact: The transform is a unitary transformation on f € L*(R;C)

(f,g) = (f, &)



Inverse Fourier transform

Sign in exponent
only difference

« Since transform Is unitary, it must have an inverse:

.ﬂ ] = | -
kY = —— —ikx d w — _f ikx kY dk
J (k) mj:me f(x) dx g(x) Nor e g(k)

« What a beautiful symmetry!



Examples

* Jupyter notebook



Generalization to higher dimensions

 Normalized Fourier transform and inverse:

n | .
e L2 R": C), k) = . —ikx d"

ge LA(R";C), &(x)=

1 k-x Il
e fw e™*o(k) d"k

 Again, a unitary transformation



Duality of differentiation and multiplication

 Consider the very informal manipulation:
|

0 A
— = LK) dk
axf(X) Vo Ox RE’ f (k)
— L f [ieﬁfﬂ f{k) dk :
Vor Ja | 0x True in Sobolev
I ) ﬂ space
= —— | e"'[ikf(k)] dk L — w2
Von L H W

f " )
* Suggests, and indeed so: [%‘ = ikf



Duality of smoothness and falloff

« Suppose we can differentiate f a number of times:

am
vl e L*(R;C)
axm Not entirely
» Since Fourier transform iIs unitary we must have rigorous

statement ...

K" f(k) € L*(R; C)

f(k) ~ k™12 a5 |k| — +oco, worst case scenario



Example: Filtering an image

A Jupyter notebook showing high-pass and low-pass filtering using
Fast Fourier Transform (FFT)



Last slide

 Thanks for joining the journey!

* Make sure to check out the maps,
literature and YouTube recs:

* https://simenkva.github.io/esqc_material/



https://simenkva.github.io/esqc_material/
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