ESQC 2024

By Simen Kvaal Mathematical Methods Lecture 5

Where to find the material SCAN ME

- Alternative 1:
	- [www.esqc.org,](http://www.esqc.org/) go to "lectures"
	- Find links there
- Alternative 2:
	- Scan QR code
	- simenkva.github.io/esqc_material

Complex analysis

Why complex analysis?

• Time-dependent Schrödinger equation

$$
i\frac{\partial}{\partial t}|\psi\rangle = \hat{H}(t)|\psi\rangle
$$

• Wave phenomena

Complex notation simplifies (!)

Wavefunction is

complex !

$$
\cos(kx - \omega t) = \text{Re} \exp[i(kx - \omega t)]
$$

- Response theory: *poles* of response function
- Evaluation of integrals analytic continuation
- Perturbation theory of eigenvalues
- Application to analysis of *real* functions

Complex plane topology

• The complex plane is topologically the same as \mathbb{R}^2

Domain

with hole –

not simply

connected

Simply connected domain – open, no holes

Definition : Complex number operations

$$
Let z = x + iy \in \mathbb{C}.
$$

• Re
$$
z = x
$$
, Im $z = y$

$$
\bullet \ \ \overline{z} = z^* = x - iy
$$

•
$$
z = re^{i\theta}
$$
,
where $e^{i\theta} = \cos \theta + i \sin \theta$

$$
Arg z = \theta
$$

real and imaginary part

complex conjugate

polar form Euler's formula

• $|z|^2 = \overline{z}z = \text{Re } z^2 + \text{Im } z^2 = r^2$ squared modulus/norm

Visualization using color wheel

• Color the complex numbers according to angle and modulus

$$
r = |x + iy|
$$
, $\theta = \text{Arg}(x + iy)$

Example: Plane wave in 2d

$$
\psi(\mathbf{r},t) = \exp[i(\mathbf{k}\cdot\mathbf{r}-\omega t)]
$$

$$
\omega = \pi, \quad \mathbf{k} = (0.75\pi, 1.5\pi)
$$

Example from https://en.wikipedia.org/wiki/Domain_coloring

The idea of a pure function

• Which functions *f*(*z*) are "pure functions of complex *z*"?

$$
f(z) = z \t f(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n \t f(z) = \frac{1}{z}
$$

$$
f(z) = \text{Re } z = \frac{1}{2} (z + \overline{z})
$$
Not "pure"

 \blacktriangleleft

- "Pure" become infinitely differentiable!
- Beautiful and useful theorems on their behavior

Definition : Complex differentiability

The function $f: U \to \mathbb{C}, U \subset^{\text{open}} \mathbb{C}$, is (complex) differentiable at $z \in U$ if the limit

$$
\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = f'(z) = \frac{df}{dz}
$$
 (1)

exists. The expression $h \to 0$ means the same as in the \mathbb{R}^2 case. If D is an open domain in C, and if $f(z)$ is complex differentiable for all $z \in D$, we say that f is and in D .

holomorphic

The definition is *the same* as in one-variable calculus, BUT *h* can approach 0 in more ways!

Cauchy—Riemann equations

• A complex function $f: \mathbb{C} \to \mathbb{C}$ can be viewed as a function $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$
f(z) = u(x, y) + iv(x, y)
$$

• Consequence of complex differentiability:

Strongly restricts complex differentiable functions!

$$
\frac{\partial u(x, y)}{\partial x} = \frac{\partial v(x, y)}{\partial y} \qquad \frac{\partial u(x, y)}{\partial y} = -\frac{\partial v(x, y)}{\partial x}
$$

Example: Derivative of monomial

Let us apply the definition of the derivative to $f(z) = z^n$.

 $f(z+h) = (z+h)^n = z^n + hnz^{n-1}$ + higher order terms.

Thus

$$
\frac{f(z+h) - f(z)}{h} = \frac{hnz^{n-1} + h.o.t.}{h} = nz^{n-1} + h.o.t.,
$$

so that the limit becomes

$$
\frac{\mathrm{d}}{\mathrm{d}z}z^n = nz^{n-1}
$$

We were able to perform the limit just by doing complex algebra. Notably, $z \in \mathbb{C}$ was completely arbitrary, so the derivative exists everywhere.

Notice how algebra is used, no limits needed

 (3)

Example : Derivative of \bar{z} does not exist

Let us try to see if $f(z) = \overline{z}$ is differentiable. Let us consider the limit $h = \delta x \rightarrow 0$ in R.

$$
\lim_{\delta x \to 0} \frac{f(x + \delta x + iy) - f(x + iy)}{\delta x} = \frac{\delta x}{\delta x} = 1
$$

However, if we allow $h = i\delta y \rightarrow 0$ instad, with $\delta y \in \mathbb{R}$, then

$$
\lim_{\delta y \to 0} \frac{f(x + i(\delta y + y)) - f(x + iy)}{\delta y} = \frac{-i\delta y}{\delta y} = -i.
$$

Since the two limits are not the same, the complex limit cannot exist, since limits are unique.

This is in fact a very simple example of a continuous function from $\mathbb{C} \to \mathbb{C}$ which is not differentiable anywhere! Such an exampe is much harder to find for functions $\mathbb{R}^2 \to \mathbb{R}^2$.

Re z is not complex differentiable either

 (2)

Holomorphic functions

- Given $f: U \to \mathbb{C}$
- If *f* is complex differentiable at all $z \in U$
- We say that *f* is <u>holomorphic</u>
- *Cauchy-Riemann implies:*
	- *f is infinitely many times differentiable*

Etymology:

• **Holo-**: from the Greek word *holos*, meaning "whole" or "entire." • **-morphic**: from the Greek word *morphē*, meaning "form" or "shape."

 $U =$ open subset of $\mathbb C$

Isolated singularities

- Suppose *f* is holomorphic in a punctured disc $(z_0$ not in set)
- We say that *f* has an <u>isolated singularity</u>
- Three options:
- *1. Removable singularity:*
	- *f* can be extended to the hole
- *2. Pole of order p:*
	- *f* cannot be extended, $f(z) \sim \frac{C}{(z z_0)^p}$
- *3. Essential singularity:*
	- *f* cannot be extended, does not behave like a pole

$U =$ puctured disc

Holomorphic functions are analytic

- Recall that if *f* is differentiable $f(z + h) = f(z) + hf'(z) + O(h^2)$
- But holomorphic means infinitely differentiable
- Remarkably, we have a convergent *power series*

$$
f(z + h) = f(z) + hf'(z) + \frac{1}{2}h^2f''(z) + \cdots
$$

Small error

• *There is always a (possible infinitely large) disc where the series converges*

Example : Geometric series

The geometric series,

$$
f(z) = \frac{1}{1-z} = 1 + z + z^2 + \cdots \qquad \text{for } |z| < 1.
$$

The function $f(z)$ is complex differentiable at any $z \neq 1$:

$$
f(z+h) = \frac{1}{1-z-h} = \frac{1}{1-z} \frac{1}{1-h/(1-z)} = \frac{1}{1-z}(1+\frac{h}{1-z}+\text{h.o.t.}),
$$
\n(2)

so that $f'(z) = \frac{1}{(1-z)^2}$.
We note that f is *divergent* as $z \to 1$, this is an example of a *pole* of f .

So functions can be defined as power series!

 (1)

Convergence radius when starting from different points

- In general, one can develop power series around different points, converging to the *same function*
- *But the convergence radius can be different*
- Radius is determined by *closest singularity*, e.g., pole

Removable singularity

• This function is defined everywhere except $z = 0$:

$$
f(z) = \frac{e^z - 1}{z}
$$

- By the usual rules for differentiation, it is holomorphic
- We Taylor expand around the origin and find:

$$
f(z) = \frac{1 + z + z^2/2 - 1 + O(z^3)}{z} = 1 + \frac{1}{2}z + O(z^2)
$$

• So we can define $f(0) = 1$ and we remove the singularity!

Complex line integrals

Definition : Complex line integral

Let $f: D \to \mathbb{C}$ be continuous, and let Γ be a (piecewise) smooth oriented curve parameterized by $\gamma : I \to \mathbb{C}$. The complex line integral of f along Γ is now defined as

$$
\int_{\Gamma} f(z) dz = \int_{I} f(\gamma(t)) \gamma'(t) dt,
$$
\n(1)

which is independent of parameterization. Note that $dz =$ $\gamma'(t)dt$, an infinitesimally small piece of the curve.

Theorem : Cauchy theorem

Let $f: D \to \mathbb{C}$, where D is a simply connected open domain. Let Γ be a piecewise smooth simple closed curve in D. Then,

$$
\oint_{\Gamma} f(z) dz = 0.
$$
 (1)

Let the function $f: D \to \mathbb{C}$ be complex differentiable, and let Γ be a simple closed curve in D . Then,

$$
f(z_0) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z - z_0} dz.
$$

The value of the function depends only on the value on the curve!

Theorem

Let D be simply connected, and let $f : D \to \mathbb{C}$ be complex analytic in D . Then f is *infinitely* many times differentiable, and we have the power series representation

$$
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \text{ where } a_n = \frac{f^{(n)}(z)}{n!}
$$
 (1)

The derivatives are given by the formula

$$
f^{(n)}(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(w)}{(w-z)^{n+1}} dw.
$$
 (2)

Cauchy residue theorem

Recall Laurent:

$$
f(z) = \sum_{n=-p}^{\infty} c_n (z - z_0)^n
$$

Definition of residue at singularity: $Res(f, z_0) = c_{-1}$ Residue theorem: If f holomorphic in U_0

$$
\int_{\Gamma} f(z) dz = 2\pi i \sum \text{Res}(f, a_k)
$$
\nSum over holes inside curve

 $U_0 = U \setminus \{a_1, a_2, \cdots\}$

 a_1

 z_0

Example: Evaluation of integral

• Task: compute:
$$
\int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx
$$

- Use residue theorem on Γ
- Find Laurent expansion around *i*
	- $Res(f, i) = 1/(2i)$
- Integral over semicircle is small, only integral on [-*R*,*R*] left
- Take limit as *R* to infinity

$$
\lim_{R \to \infty} \int_{-R}^{R} \frac{1}{x^2 + 1} dx = 2\pi i \frac{1}{2i} = \pi
$$

Fourier series and transform

What is Fourier theory good for?

- Some partial differential equations become simpler
	- Poisson equation ...
- Plane-wave basis sets
	- Solid state systems, crystals ...
- Response theory
	- How a quantum system responds to periodic perturbations (e.g., EM waves)
- Signal processing, image analysis

Epicycles of planetary motion

- Ptolemaic and Copernican system of astronomy was *geocentric*
- But observations required *epicycles*
- An early form of *Fourier series*

$$
z(t) = a_0 e^{ik_0 t} + a_1 e^{ik_1 t}
$$

Epicycles of planetary motion

- Ptolemaic and Copernican system of astronomy was *geocentric*
- But observations required *epicycles*
- An early form of *Fourier series*

 $z(t) = a_0 e^{ik_0 t} + a_1 e^{ik_1 t}$

• (The ancient Greeks did not use) complex numbers)

Joseph Fourier (1768-1830)

- Had the idea that *general* periodic functions could be decomposed into *sinusoidal components*
- A function of period *T:*

Complex Fourier series

- Let $f : \mathbb{R} \to \mathbb{C}$
- The function is *periodic with period T if*

 $f(t+T) = f(t)$

The exponential functions are periodic, shorter and shorter period

Can we find a series such that

 $\tilde{f}(t) = f(t)$

?

• Consider now a *Fourier series*

$$
\tilde{f}(t) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi int/T}, \quad c_n \in \mathbb{C}
$$

• Assuming convergence of series, clearly a periodic function

Theorem: Complex Fourier series

- Let $f : \mathbb{R} \to \mathbb{C}$
- Periodic with period *T*
- Square integrable in [0,*T*] :

$$
\int_0^T |f(t)|^2 dt < +\infty
$$

• Let
$$
c_n = \frac{1}{T} \int_0^T e^{-2\pi int/T} f(t) dt
$$
 and $\tilde{f}(t) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi int/T}$, $c_n \in \mathbb{C}$

• *Then* $\tilde{f}(t) = f(t)$ "almost everywhere"

In terms of infinite dimensional Hilbert

• The exponential functions are orthonormal basis functions for $L^2[0,T]$

$$
\phi_n(t) = \frac{1}{\sqrt{T}} e^{2\pi int/T} \qquad \langle \phi_n, \phi_m \rangle = \frac{1}{T} \int_0^T e^{2\pi i (m-n)t/T} dt = \delta_{n,m}
$$

- Fourier series "just" a basis expansion!
- But an L^2 function only defined up to "sets of zero length", so convergence not necessarily everywhere

Examples

- We watch a Jupyter notebook with Fourier series of
	- Square wave
	- Sawtooth wave
	- \bullet ...

Dirichlet conditions

Conditions on *f* such that Fourier series converges *everywhere*

- 1. Must be periodic
- 2. A finite number of maxima and minima in one period
- 3. A finite number of discontinuities
- Under these conditions, the series converges everywhere
- Except at discontinuities, where it converges to average of "jump"
	- See, e.g., square wave example

Sine/cosine series

- $e^{2\pi int/T} = \cos\left(\frac{2\pi nt}{T}\right) + i\sin\left(\frac{2\pi nt}{T}\right)$ • Using Euler's formula:
- We rewrite the Fourier series:

$$
\tilde{f}(t) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi int/T}, \quad c_n \in \mathbb{C}
$$
\n
$$
= \frac{b_0}{\sqrt{2\pi}} + \sum_{n=1}^{\infty} b_n \cos\left(\frac{2\pi nt}{n}\right) + a_n \sin\left(\frac{2\pi nt}{n}\right)
$$

Equivalent series, but sine/cosine can be more useful sometimes

$$
\tilde{f}(t) = \frac{b_0}{2} + \sum_{n=1}^{n} b_n \cos\left(\frac{2\pi nt}{T}\right) + a_n \sin\left(\frac{2\pi nt}{T}\right)
$$

$$
b_n = c_n + c_{-n}, \quad a_n = i(c_n - c_{-n})
$$

Fourier transform

• For functions that are *not periodic:*

$$
f \in L^2(\mathbb{R}; \mathbb{C}),
$$
 i.e., $\int_{-\infty}^{\infty} |f(x)|^2 dx < +\infty$

• The (normalized) Fourier transform is defined as:

$$
\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x) \, dx
$$

• Fact: The transform is a *unitary transformation on* $f \in L^2(\mathbb{R}; \mathbb{C})$

$$
f, g \in L^2 \implies \hat{f}, \hat{g} \in L^2, \quad \langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle
$$

Inverse Fourier transform

Sign in exponent only difference

• Since transform is unitary, it must have an inverse:

$$
\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx \qquad \check{g}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} g(k) dk
$$

• What a beautiful symmetry!

Examples

• Jupyter notebook

Generalization to higher dimensions

• Normalized Fourier transform and inverse:

$$
f \in L^{2}(\mathbb{R}^{n}; \mathbb{C}), \quad \hat{f}(\mathbf{k}) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} e^{-i\mathbf{k} \cdot \mathbf{x}} f(\mathbf{x}) d^{n}x
$$

$$
g \in L^{2}(\mathbb{R}^{n}; \mathbb{C}), \quad \check{g}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^{n}} e^{i\mathbf{k} \cdot \mathbf{x}} g(\mathbf{k}) d^{n}k
$$

• Again, a unitary transformation

Duality of differentiation and multiplication

• Consider the very informal manipulation:

$$
\frac{\partial}{\partial x} f(x) = \frac{1}{\sqrt{2\pi}} \frac{\partial}{\partial x} \int_{\mathbb{R}} e^{ikx} \hat{f}(k) dk
$$

\n
$$
= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left[\frac{\partial}{\partial x} e^{ikx} \right] \hat{f}(k) dk
$$

\n
$$
= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ikx} [ik \hat{f}(k)] dk
$$

\n
$$
= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ikx} [ik \hat{f}(k)] dk
$$

\n
$$
= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ikx} [ik \hat{f}(k)] dk
$$

\n
$$
= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ikx} [ik \hat{f}(k)] dk
$$

\n
$$
= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ikx} [ik \hat{f}(k)] dk
$$

• Suggests, and indeed so: $\left|\frac{d}{dx}\right| = ik$

Duality of smoothness and falloff

• Suppose we can differentiate *f* a number of times:

$$
\frac{\partial^m f}{\partial x^m} \in L^2(\mathbb{R}; \mathbb{C})
$$

• Since Fourier transform is unitary we must have

$$
k^m \hat{f}(k) \in L^2(\mathbb{R}; \mathbb{C})
$$

Not entirely rigorous statement ...

 $\hat{f}(k) \sim k^{-m-1/2}$ as $|k| \to +\infty$, worst case scenario

Example: Filtering an image

• A Jupyter notebook showing high-pass and low-pass filtering using Fast Fourier Transform (FFT)

Last slide

- *Thanks for joining the journey!*
- Make sure to check out the maps, literature and YouTube recs:
- https://simenkva.github.io/esqc_material/

